Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 457
Filtrar
1.
Acta Crystallogr E Crystallogr Commun ; 80(Pt 4): 408-412, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38584734

RESUMO

A novel cationic complex, bromido-tetra-kis-[5-(prop-2-en-1-ylsulfan-yl)-1,3,4-thia-diazol-2-amine-κN 3]copper(II) bromide, [CuBr](C5H7N3S2)4Br, was synthesized. The complex crystallizes with fourfold mol-ecular symmetry in the tetra-gonal space group P4/n. The CuII atom exhibits a square-pyramidal coord-ination geometry. The Cu atom is located centrally within the complex, being coordinated by four nitro-gen atoms from four AAT mol-ecules, while a bromine anion is located at the apex of the pyramid. The amino H atoms of AAT inter-act with bromine from the inner and outer spheres, forming a two-dimensional network in the [100] and [010] directions. Hirshfeld surface analysis reveals that 33.7% of the inter-mol-ecular inter-actions are from H⋯H contacts, 21.2% are from S⋯H/H⋯S contacts, 13.4% are from S⋯S contacts and 11.0% are from C⋯H/H⋯C, while other contributions are from Br⋯H/H⋯Br and N⋯H/H⋯N contacts.

2.
Chem Biodivers ; : e202400522, 2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38606431

RESUMO

1,3,4-Thiadiazole compounds were synthesized using pyridine carboxylic acid derivatives and thiosemicarbazide derivatives. The molecular structures of the resulting compounds were characterized by spectroscopic methods such as ATR-FTIR, 1H-NMR, and elemental analysis. Its compounds were also examined for their antibacterial properties against some strains of bacteria. Five synthesized compounds showed varying antibacterial effects on Escherichia coli, Salmonella kentucky, Bacillus substilis and Klebsiella pneumoniae. This result revealed that some of the resulting compounds could be antibacterial agents.

3.
Heliyon ; 10(8): e29390, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38655368

RESUMO

In this study, a novel series of pyridine-based thiadiazole derivatives (NTD1-NTD5) were synthesized as prospective anti-inflammatory agents by combining substituted carboxylic acid derivatives of 5-substituted-2-amino-1,3,4-thiadiazole with nicotinoyl isothiocyanate in the presence of acetone. The newly synthesized compounds were characterized by FTIR, 1H NMR, 13C NMR, and mass spectrometry. First, the compounds underwent rigorous in vivo testing for acute toxicity and anti-inflammatory activity and the results revealed that three compounds-NTD1, NTD2, and NTD3, displayed no acute toxicity and significant anti-inflammatory activity, surpassing the efficacy of the standard drug, diclofenac. Notably, NTD3, which featured benzoic acid substitution, emerged as the most potent anti-inflammatory agent among the screened compounds. To further validate these findings, an in silico docking study was carried out against COX-2 bound to diclofenac (PDB ID: 1pxx). The computational analysis demonstrated that NTD2, and NTD3, exhibited substantial binding affinity, with the lowest binding energies (-8.5 and -8.4, kcal/mol) compared to diclofenac (-8.4 kcal/mol). This alignment between in vivo and in silico data supported the robust anti-inflammatory potential of these derivatives. Moreover, molecular dynamics simulations were conducted, extending over 100 ns, to examine the dynamic interactions between the ligands and the target protein. The results solidified NTD3's position as a leading candidate, showing potent inhibitory activity through strong and sustained interactions, including stable hydrogen bond formations. This was further confirmed by RMSD values of 2-2.5 Å and 2-3Ǻ, reinforcing NTD3's potential as a useful anti-inflammatory agent. The drug likeness analysis of NTD3 through SwissADME indicated that most of the predicted parameters including Lipinski rule were within acceptable limits. While these findings are promising, further research is necessary to elucidate the precise relationships between the chemical structures and their activity, as well as to understand the mechanisms underlying their pharmacological effects. This study lays the foundation for the development of novel anti-inflammatory therapeutics, potentially offering improved efficacy and safety profiles.

4.
Pharmacol Rep ; 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38587587

RESUMO

BACKGROUND: The use of amphotericin B (AmB) in the therapy of systemic mycosis is associated with strong side effects, including nephrotoxicity, and hepatotoxicity. Therefore, agents that can reduce the toxic effects of AmB while acting synergistically as antifungal agents are currently being sought. 1,3,4-thiadiazole derivatives are promising compounds that have an antifungal activity and act synergically with AmB. Such combinations might allow the dose of AmB, which is essential for preventing patients from having serious side effects, to be decreased. This might result from the antioxidant properties of 1,3,4-thiadiazoles. Thus, the aim of the study was to investigate redox homeostasis in human renal proximal tubule epithelial cells (RPTEC) after they had been treated with AmB in combination with 1,3,4-thiadiazole derivatives. METHODS: Cellular redox homeostasis was assessed by investigating the total antioxidant capacity (TAC) of cells, the malondialdehyde (MDA) concentration, and the activity of antioxidant enzymes such as superoxide dismutase (SOD), glutathione peroxidase (GPX), and catalase (CAT). TAC was measured using an ABTS method. The MDA concentration, and the activity of SOD, GPX, and CAT were determined spectrophotometrically using commercially available assays. Additionally, the antioxidant defense system-related gene expression profile was determined using oligonucleotide microarrays (HG-U133A 2.0). Quantitative reverse transcription polymerase chain reaction (RT-qPCR) was used to confirm the microarray results. RESULTS: Amphotericin B and selected 1,3,4-thiadiazole derivatives had a significant effect on the total antioxidant capacity of the RPTEC cells, and the activity of the antioxidant enzymes. We also revealed that the effect of thiadiazoles on the SOD and CAT activities is dependent on the treatment of RPTEC cells with AmB. At the transcriptional level, the expression of several genes was affected by the studied compounds and their combinations. CONCLUSIONS: The results confirmed that thiadiazoles can stimulate the RPTEC cells to defend against the oxidative stress that is generated by AmB. In addition, together with the previously demonstrated synergistic antifungal activity, and low nephrotoxicity, these compounds have the potential to be used in new therapeutic strategies in the treatment of fungal infections.

5.
J Agric Food Chem ; 72(12): 6672-6683, 2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38481361

RESUMO

Flavonoids, ubiquitous natural products, provide sources for drug discovery owing to their structural diversity, broad-spectrum pharmacological activity, and excellent environmental compatibility. To develop antibacterial and antifungal agents with novel mechanisms of action and innovative structures, a series of novel 5-sulfonyl-1,3,4-thiadiazole-substituted flavonoids were designed and synthesized, and their biological activities against seven agriculturally common phytopathogenic microorganisms were evaluated. The results of the antimicrobial bioassay showed that most of the target compounds displayed excellent inhibitory effects against Xanthomonas oryzae, Rhizoctonia solani, and Colletotrichum orbiculare. Compounds 1, 3, 7, 9, 13, and 14 exhibited remarkable antibacterial activity against X. oryzae pv. oryzae with EC50 values below 10 µg/mL, which were superior to bismerthiazol (70.89 µg/mL). Compound 2 (EC50 = 0.41 µg/mL) displayed the most effective inhibitory potency against R. solani in vivo, comparable protective effects with the positive control carbendizam. Preliminary mechanistic studies indicated that compound 2 induced disordered entanglement of hyphae, shrinkage of hyphal surfaces, extravasation of cellular contents, and vacuole swelling and rupture, which disrupted normal hyphal growth. Subsequently, compounds 35-53 with good antifungal activity were designed and synthesized based on reliable three-dimensional quantitative structure-activity relationship (3D-QSAR) models. Compound 49 showed high efficacy and superior antifungal activity against R. solani, with an EC50 value of 0.28 µg/mL and a half-maximal effective concentration of 0.46 µg/mL.


Assuntos
Fungicidas Industriais , Tiadiazóis , Xanthomonas , Relação Quantitativa Estrutura-Atividade , Fungicidas Industriais/química , Antifúngicos/farmacologia , Flavonoides/farmacologia , Testes de Sensibilidade Microbiana , Doenças das Plantas/microbiologia , Antibacterianos/farmacologia , Relação Estrutura-Atividade
6.
Chem Biodivers ; : e202301870, 2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38538544

RESUMO

New sets of functionalized thiazolidinone and thiadiazole derivatives were synthesized, and their cytotoxicity was evaluated on HepG2, MCF-7, HTC-116, and WI38 cells. The synthetic approach is based on the preparation of 4-(4-acetamidophenyl)thiosemicarbazide (4) and their thiosemicarbazones 5a-e, which are converted to the corresponding thiazoldin-4-one compounds 6a-e upon cyclization with ethyl bromoacetate. The thiadiazole compounds 9 and 12 were obtained by reacting 4-(4-acetamidophenyl)thiosemicarbazide with isothiocyanates and/or ethyl 2-cyano-3,3-bis(methylthio)acrylate, respectively. The thiazolidinone compounds 6c and 6e exhibited strong cytotoxicity against breast cancer cells, with an IC50 (6.70±0.5 µM) and IC50 (7.51±0.8 µM), respectively, very close to that of doxorubicin (IC50: 4.17±0.2 µM). In addition, the anti-cancer properties of the tested thiazolidinone and thiadiazole scaffolds were further explored by the molecular docking program (MOE)-(PDB Code-1DLS). Compounds 5d, 5e, 6d, 6e, and 7 have the best binding affinity, ranging from -8.5386 kcal.mol-1 to -8.2830 kcal.mol-1.

7.
J Biomol Struct Dyn ; : 1-19, 2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38533902

RESUMO

Various carbonic anhydrase (CA) enzyme isoforms are known today. In addition to the use of CA inhibitors as diuretics, antiepileptics and antiglaucoma agents, the inhibition of other specific isoforms of CA was reported to have clinical benefits in cancers. In this study, two groups of 1,3,4-thiadiazole derivatives were designed and synthesized to act as human CA I and II (hCA I and hCA II) inhibitors. The activities of these compounds were tested in vitro and evaluated in silico studies. The activity of the synthesized compounds was also tested against acetylcholinesterase (AChE) to evaluate the relation of the newly designed structures to the activity against AChE. The synthesized compounds were analyzed by 1H NMR,13C NMR and high-resolution mass spectroscopy (HRMS). The results displayed a better activity of all the synthesized compounds against hCA I than that of the commonly used standard drug, Acetazolamide (AAZ). The compounds also showed better activity against hCA II, except for compounds 5b and 6b. Only compounds 6a and 6c showed superior activity against AChE compared to the standard agent, tacrine (THA). In silico studies, including absorption, distribution, metabolism and excretion (ADME) and drug-likeness evaluation, molecular docking, molecular dynamic simulations (MDSs) and density functional theory (DFT) calculations, were compatible with the in vitro results and presented details regarding the structure-activity relationship.Communicated by Ramaswamy H. Sarma.

8.
Int J Mol Sci ; 25(6)2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38542326

RESUMO

4-[5-(Naphthalen-1-ylmethyl)-1,3,4-thiadiazol-2-yl]benzene-1,3-diol (NTBD) was extensively studied through stationary UV-vis absorption and fluorescence measurements in various solvents and solvent mixtures and by first-principles quantum chemical calculations. It was observed that while in polar solvents (e.g., methanol) only a single emission band emerged; the analyzed 1,3,4-thiadiazole derivative was capable of producing dual fluorescence signals in low polarity solvents (e.g., n-hexane) and certain solvent mixtures (e.g., methanol/water). As clearly follows from the experimental spectroscopic studies and theoretical modeling, the specific emission characteristic of NTBD is triggered by the effect of enol → keto excited-state intramolecular proton transfer (ESIPT) that in the case of solvent mixture is reinforced by aggregation of thiadiazole molecules. Specifically, the restriction of intramolecular rotation (RIR) due to environmental hindrance suppresses the formation of non-emissive twisted intramolecular charge transfer (TICT) excited keto* states. As a result, this particular thiadiazole derivative is capable of simultaneously producing both ESIPT and aggregation-induced emission (AIE).


Assuntos
Metanol , Tiadiazóis , Espectrometria de Fluorescência , Solventes/química , Prótons
9.
Chem Biodivers ; 21(4): e202400135, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38425248

RESUMO

Four series of novel pyridine derivatives (17 a-i, 18 a-i, 19 a-e, and 20 a-e) were synthesized and their antimicrobial activities were evaluated. Of all the target compounds, almost half target compounds showed moderate or high antibacterial activity. The 4-F substituted compound 17 d (MIC=0.5 µg/mL) showed the highest antibacterial activity, its activity was twice the positive control compound gatifloxacin (MIC=1.0 µg/mL). For fungus ATCC 9763, the activities of compounds 17 a and 17 d are equivalent to the positive control compound fluconazole (MIC=8 µg/mL). Furthermore, compounds 17 a and 17 d showed little cytotoxicity to human LO2 cells, and did not show hemolysis even at ultra-high concentration (200 µM). The results indicate that these compounds are valuable for further development as antibacterial and antifungal agents.


Assuntos
Tiadiazóis , Humanos , Tiadiazóis/farmacologia , Antifúngicos/farmacologia , Antibacterianos/farmacologia , Fungos , Piridinas/farmacologia , Testes de Sensibilidade Microbiana , Relação Estrutura-Atividade
10.
Chem Biodivers ; 21(4): e202302000, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38427723

RESUMO

With a lack of targeted therapy and significantly high metastasis, heterogeneity, and relapse rates, Triple-Negative Breast Cancer (TNBC) offers substantial treatment challenges and demands more chemotherapeutic interventions. In the present study, indole-endowed thiadiazole derivatives have been synthesized and screened for antiproliferative potency against the triple-negative breast cancer MDA-MB-231 cell line. Compound 4 h, possessing chlorophenyl moiety, displays the best anticancer potency (IC50: 0.43 µM) in the cell viability assay. The title compounds demonstrate substantial docking competency against the EGFR receptor (PDB ID: 3POZ), validating their in-vitro ant proliferative action. With a high docking score (-9.9 to -8.7 kcal/mol), the indole hybrids display significant binding propensity comparable to the co-crystallized ligand TAK-285 and occupy a similar strategic position in the active domain of the designated receptor. The quantum and electronic properties of the integrated templates are evaluated through DFT, and optimal values of the deduced global reactivity indices, such as energy gap, electronegativity, ionization potential, chemical potential, electrophilicity, etc., suggest their apt biochemical reactivity. The indole hybrids show near-appropriate pharmacokinetic efficacy and bioavailability in the in-silico studies, indicating their candidacy for potential drug usage. Promising in-vitro anticancer action and binding interfaces project indole conjugates as potential leads in addressing the TNBC dilemma.


Assuntos
Antineoplásicos , Tiadiazóis , Neoplasias de Mama Triplo Negativas , Humanos , Antineoplásicos/química , Relação Estrutura-Atividade , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Neoplasias de Mama Triplo Negativas/patologia , Tiadiazóis/química , Indóis/química , Simulação de Acoplamento Molecular , Proliferação de Células , Linhagem Celular Tumoral
11.
Anal Chim Acta ; 1297: 342379, 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38438245

RESUMO

Here, 1,3,4-thiadiazole unit was employed as novel excited state intramolecular proton transfer (ESIPT) structure to prepare favorable fluorescent probe. High selectivity and rapid response to Cu2+ was obtained and the settling reaction was also used to recover ESIPT characteristics of probe to achieve sequential detection of H2S. Remarkable color change of solution from colorless to bright yellow and fluorescence emission from green to dark realized the visual detection of Cu2+ by naked eyes and transition of probe into portable fluorescent test strips. As expected, L-E could be utilized to quantitatively sense Cu2+ and H2S in different actual water and food samples including herbs, wine and fruits. The limits of detection for Cu2+ and H2S were as low as 34.5 nM and 38.6 nM. Also, probe L-E achieved real-time, portable, on-site quantitative detection of Cu2+ via a colorimeter and a smartphone platform with limit of detection to 90.3 nM.


Assuntos
Corantes Fluorescentes , Tiadiazóis , Vinho , Frutas , Prótons
12.
Chem Biodivers ; : e202400408, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38441384

RESUMO

To develop novel bacterial biofilm inhibiting agents, a series of 1,3,4-thiadiazole derivatives containing sulfonylpiperazine structures were designed, synthesized, and characterized using 1H nuclear magnetic resonance (1H NMR), 13C nuclear magnetic resonance (13C NMR), and high-resolution mass spectrometry. Meanwhile, their biological activities were evaluated, and the ensuing structure-activity relationships were discussed. The bioassay results showed the substantial antimicrobial efficacy exhibited by most of the compounds. Among them, compound A24 demonstrated a strong efficacy with an EC50 value of 7.8 µg/mL in vitro against the Xanthomonas oryzae pv. oryzicola (Xoc) pathogen, surpassing commercial agents thiodiazole copper (31.8 µg/mL) and bismerthiazol (43.3 µg/mL). Mechanistic investigations into its anti-Xoc properties revealed that compound A24 operates by increasing the permeability of bacterial cell membranes, inhibiting biofilm formation and cell motility, and inducing morphological changes in bacterial cells. Importantly, in vivo tests showed its excellent protective and curative effects on rice bacterial leaf streak. Besides, molecular docking showed that the hydrophobic effect and hydrogen-bond interactions are key factors between the binding of A24 and AvrRxo1-ORF1. Therefore, these results suggest the utilization of 1,3,4-thiadiazole derivatives containing sulfonylpiperazine structures as a bacterial biofilm inhibiting agent, warranting further exploration in the realm of agrochemical development.

13.
Pharmaceuticals (Basel) ; 17(3)2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38543163

RESUMO

This article reports on the synthesis of nine promising new 1,3,4-thiadiazole derivatives based on 3-aminopyridones, containing various acidic linkers. The synthesis was carried out by cyclizing the corresponding thiohydrazides 4a-c and anhydrides of glutaric, maleic, and phthalic acids upon heating in acetic acid solution. The conducted bio-screening of the synthesized new 1,3,4-thiadiazole derivatives containing different acidic linkers (butanoic, acrylic, and benzoic acids) showed that they have significant inhibitory activity against α-glucosidase (up to 95.0%), which is 1.9 times higher than the value for the reference drug acarbose (49.5%). Moreover, one of the 1,3,4-thiadiazole derivatives with a benzoic acid linker-2-(5-((6-Methyl-2-oxo-4-(thiophen-2-yl)-1,2-dihydropyridin-3-yl)carbamoyl)-1,3,4-thiadiazol-2-yl)benzoic acid (9'b)-showed an IC50 value of 3.66 mM, nearly 3.7 times lower than that of acarbose (IC50 = 13.88 mM). High inhibitory activity was also shown by 1,3,4-thiadiazole derivatives with a butanoic acid linker (compounds 7b, 7c)-with IC50 values of 6.70 and 8.42 mM, respectively. A correlation between the structure of the compounds and their activity was also established. The results of molecular docking correlated well with the bioanalytical data. In particular, the presence of a butanoic acid linker and a benzoic fragment in compounds 7b, 7c, and 9b increased their binding affinity with selected target proteins compared to other derivatives 3-6 (a-c). Calculations according to Lipinski's rule of five also showed that the synthesized compounds 7b, 7c, and 9b fully comply with Ro5 and meet all criteria for good permeability and acceptable oral bioavailability of potential drugs. These positive bioanalytical results will stimulate further in-depth studies, including in vivo models.

14.
3 Biotech ; 14(3): 71, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38362592

RESUMO

In our continuous effort to develop novel antiepileptic drug, a new series of nipecotic acid derivatives having1,3,4-thiadiazole nucleus were designed and synthesized. This study aims to improve the lipophilicity of nipecotic acid by attaching some lipophilic anchors like thiadiazole and substituted aryl acid derivatives. In our previous study, we noticed that the N-substituted oxadiazole derivative of nipecotic acid exhibited significant antiepileptic activity in the rodent model. The synthesized compounds were characterized by FT-IR, 1H-NMR, 13C-NMR, Mass, and elemental analysis. The anticonvulsant activity was evaluated by using the maximal electroshock-induced seizure model in rats (MES) and the subcutaneous pentylenetetrazol (scPTZ) test in mice. None of the compounds were found to be active in the MES model whereas compounds (TN2, TN9, TN12, TN13, and TN15) produced significant protection against the scPTZ-induced seizures model. The compounds showing antiepileptic activity were additionally evaluated for antidepressant activity by using the forced swim test, 5-hydroxytryptophan (5-HTP)-induced head twitch test, and learned helplessness test. All the molecules that showed anticonvulsant activity (TN2, TN9, TN12, TN13, and TN15), also exerted significant antidepressant effects in the animal models. The selected compounds were subjected to different toxicity studies. Compounds were found to have no neurotoxicity in the rota-rod test and devoid of hepatic and renal toxicity in 30 days repeated oral toxicity test. Further, a homology model was developed to perform the in-silico molecular docking and dynamics studies which revealed the similar binding of compound TN9 within the active binding pocket and were found to be the most potent anti-epileptic agent. The market expectation for newly developed antiepileptic thiadiazole-based nipecotic acid derivatives is significant, driven by their potential to offer improved therapeutic outcomes and reduced side effects, addressing a critical need in epilepsy treatment. These innovative compounds hold promise for meeting the demand for more effective and safer antiepileptic medications. Supplementary Information: The online version contains supplementary material available at 10.1007/s13205-023-03897-1.

15.
Future Med Chem ; 16(6): 563-581, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38353003

RESUMO

This review meticulously examines the synthesis techniques for 1,3,4-thiadiazole derivatives, focusing on cyclization, condensation reactions and functional group transformations. It enhances the understanding of these chemical methods that re crucial for tailoring derivative properties and functionalities. This study is considered to be vital for researchers, detailing established effects such as antioxidant, antimicrobial and anticancer activities, and revealing emerging pharmacological potentials such as neuroprotective, antiviral and antidiabetic properties. It also discusses the molecular mechanisms underlying these effects. In addition, this article covers structure-activity relationship studies and computational modelling that are essential for designing potent, selective 1,3,4-thiadiazole compounds. This work lays a foundation for future research and targeted therapeutic development.


Assuntos
Anti-Infecciosos , Tiadiazóis , Relação Estrutura-Atividade , Anti-Infecciosos/farmacologia , Tiadiazóis/farmacologia , Tiadiazóis/química , Ciclização
16.
Future Med Chem ; 16(4): 335-348, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38314616

RESUMO

Aim: Recently, thiadiazole-containing drugs have gained greater clinical relevance and are being explored for the development of new antidiabetic, antiurease and antimicrobial agents that target drug resistance. Methods & results: The authors disclose the synthesis of N-(5-[4-(trifluoromethyl)phenyl]-1,3,4-thiadiazol-2-yl)methanimine derivatives starting from 4-(trifluoromethyl)benzoic acid. All of the synthesized derivatives were evaluated for their biological potential in order to investigate the inhibitory activity against antidiabetic, antiurease and antibacterial profiles. Compounds 1, 2 and 9 showed excellent inhibitory activities due to the hydrogen bonding presence of -OH, -F and -CF3 substitutions attached with the phenyl ring. Conclusion: The present study provides potent antidiabetic, antiurease and antimicrobial agents that can be further optimized to discover novel antidiabetic, antiurease drugs.


Assuntos
Anti-Infecciosos , Tiadiazóis , Simulação de Acoplamento Molecular , Relação Estrutura-Atividade , Bases de Schiff/farmacologia , Tiadiazóis/farmacologia , Anti-Infecciosos/farmacologia , Hipoglicemiantes/farmacologia , Estrutura Molecular
17.
ACS Appl Mater Interfaces ; 16(7): 9088-9097, 2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38319245

RESUMO

The nonclassical ten-pi-electron 5,5-fused thieno[3,4-c]thiadiazole (TTD) unit is an excellent building block for constructing sub-silicon-band gap organic semiconductors. However, no small molecule acceptor (SMA) materials based on TTD have been reported despite the fact that high-sensitivity near-infrared organic photodetectors (OPDs) are generally achieved by using SMAs. In this work, we report a TTD-based narrow band gap (0.95 eV) SMA material TTD(DTC-2FIC)2 with strong near-infrared absorption. Employing PTB7-Th as a donor, OPDs based on TTD(DTC-2FIC)2 exhibit an optimized responsivity of 0.095 (±0.007) A W-1 at 1100 nm and sustain a decent responsivity of 0.074 (±0.008) A W-1 at 1200 nm. Moreover, a good specific detectivity over 1 × 1011 Jones is achieved at a wavelength of 1200 nm. Detailed characterizations imply that the performance of TTD(DTC-2FIC)2-based OPDs may be substantially improved by choosing lower-mixing donors with shallower energy levels. This work demonstrates that SMAs incorporating TTD as the core unit hold promise for constructing high-sensitivity sub-silicon-band gap OPDs.

18.
J Biomol Struct Dyn ; : 1-16, 2024 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-38166545

RESUMO

1,3,4-Thiadiazoles are structures that are bioisosteres of 1,3,4-oxadiazole and pyrimidine ring, which are found in the structure of many drugs and anticancer active newly studied derivatives. In the past, high effect profiles have been observed in many molecules created, based on the anticancer effects of the 2-amino-1,3,4-thiadiazole (NSC 4728) molecule and acetazolamide molecules. Focusing on these molecules and evaluating them in terms of mechanistic effects, twelve new N-[5-((3,5-dichlorophenoxy) methyl]-1,3,4-thiadiazole derivatives (3a-3i) were synthesized and their biological activities were investigated in lung cancer cells. The anticancer effects of the compounds were evaluated on the A549 and L929 cell lines. Compound 3f, namely 2-[(5-chlorobenzotiyazol-2-yl)thio]-N-[5-[(3,5-dichlorophenoxy)methyl]-1,3,4-thiadiazol-2-yl]acetamide, showed better activity than cisplatin, exhibiting high inhibitory potency (IC50: <0.98 µg/mL) and selectivity against A549 cell line even at the lowest concentration tested. Compounds 3c, 3f, and 3h with the lowest IC50 values of the compounds exhibited an excellent percentage of apoptosis between 72.48 and 91.95% compared to cisplatin. The caspase-3 activation and mitochondrial membrane potential change of the aforementioned three compounds were also studied. Moreover, matrix metalloproteinase-9 (MMP-9) inhibition potential of all final compounds was also investigated and IC50 values for compounds 3b and 3g were identified as 154.23 and 107.28 µM. Molecular docking and molecular dynamic simulation studies for MMP-9 enzyme inhibition were realized on these compounds and the nitrogen atoms of amide and thiadiazole moieties' ascertained that they play a key role in chelating with Zn metal, at the same time, (thio)ether moieties allow conformational change resulting in the ligand can make more stable contacts.Communicated by Ramaswamy H. Sarma.

19.
Cancers (Basel) ; 16(1)2024 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-38201645

RESUMO

The conjugate N-adducts of thio-1,3,4-diazole and 2-thiazoline with levoglucosenone were synthesized via a stereoselective, base-catalyzed conjugate N-Michael addition to levoglucosenone at C-4. Structural assignments were established using 1H and 13C NMR analysis, and X-ray single-crystal analysis for one of the compounds. The biological properties of the novel compounds were tested on a cell model. Cytotoxicity was analyzed via colorimetric assay. Two distinct types of cell death, apoptosis and necrosis, were analyzed by determining the phosphatidylserine levels from the outer leaflet of the plasma membrane, caspase activation, and lactate dehydrogenase release. We also evaluated DNA damage using an alkaline comet assay. The level of oxidative stress was measured with a modified comet assay and an H2DCFDA probe. The thio-1,3,4-diazole adduct (FCP23) and the 2-thiazoline adduct (FCP26) exhibit similar cytotoxicity values for cancer cells (ovarian (A2780), breast (MCF-7), cervix (HeLa), colon (LoVo), and brain (MO59J and MO59K)), but their mechanism of action is drastically different. While FCP23 induces oxidative stress, DNA damage, and necrosis, FCP26 induces apoptosis through caspase activation.

20.
Molecules ; 29(2)2024 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-38257199

RESUMO

To effectively control the infection of plant pathogens, we designed and synthesized a series of phenylthiazole derivatives containing a 1,3,4-thiadiazole thione moiety and screened for their antibacterial potencies against Ralstonia solanacearum, Xanthomonas oryzae pv. oryzae, as well as their antifungal potencies against Sclerotinia sclerotiorum, Rhizoctonia solani, Magnaporthe oryzae and Colletotrichum gloeosporioides. The chemical structures of the target compounds were characterized by 1H NMR, 13C NMR and HRMS. The bioassay results revealed that all the tested compounds exhibited moderate-to-excellent antibacterial and antifungal activities against six plant pathogens. Especially, compound 5k possessed the most remarkable antibacterial activity against R. solanacearum (EC50 = 2.23 µg/mL), which was significantly superior to that of compound E1 (EC50 = 69.87 µg/mL) and the commercial agent Thiodiazole copper (EC50 = 52.01 µg/mL). Meanwhile, compound 5b displayed the most excellent antifungal activity against S. sclerotiorum (EC50 = 0.51 µg/mL), which was equivalent to that of the commercial fungicide Carbendazim (EC50 = 0.57 µg/mL). The preliminary structure-activity relationship (SAR) results suggested that introducing an electron-withdrawing group at the meta-position and ortho-position of the benzene ring could endow the final structure with remarkable antibacterial and antifungal activity, respectively. The current results indicated that these compounds were capable of serving as promising lead compounds.


Assuntos
Antifúngicos , Fungicidas Industriais , Tiadiazóis , Antifúngicos/farmacologia , Tionas , Fungicidas Industriais/farmacologia , Antibacterianos/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...